Sequential Anytime-Valid Inference (SAVI) using E-Processes

(Part II)

Xiaoqi (Shirley) Liu

28 October 2025

Overview

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under 7
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

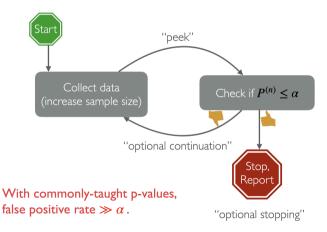
- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Motivation for SAVI (recap)

What is the problem with continuous monitoring?



Setup (recap)

Setup (recap)

Natural filtration: for $t \in \{0, 1, ...\}$, $\mathcal{F}_t = \sigma(X_1, ..., X_t)$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F} := (\mathcal{F}_t)_{t \geq 0}$

Process: sequence of r.v.s $Y=(Y_t)_{t\geq 0}$ adapted to \mathcal{F} , i.e., every Y_t is \mathcal{F}_t -measurable.

 Y_t is predictable if Y_t is \mathcal{F}_{t-1} -measurable $(t \geq 1)$

Stopping time (or rule) τ : nonnegative integer-valued r.v. s.t. $\{\tau \leq t\} \in \mathcal{F}_t$ for each $t \geq 0$.

Level– α sequential test for \mathcal{P} : a binary process $\phi = (\phi_t)_{t \geq 1}$ with

$$\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{P}\!\big(\exists t\geq 1:\phi_t=1\big)\leq \alpha$$

Test supermartingales & e-processes (recap)

Test supermartingales & e-processes (recap)

Test supermartingale for \mathcal{P} **.** For every $\mathbb{P} \in \mathcal{P}$, $M = (M_t)_{t \geq 0}$ satisfies

- $M_t \geq 0$ \mathbb{P} -a.s.,
- ullet $\mathbb{E}^{\mathbb{P}}[M_t \mid \mathcal{F}_{t-1}] \leq M_{t-1}$, and
- $\mathbb{E}^{\mathbb{P}}[M_0] \leq 1$.

Test supermartingales & e-processes (recap)

Test supermartingale for \mathcal{P} **.** For every $\mathbb{P} \in \mathcal{P}$, $M = (M_t)_{t \geq 0}$ satisfies

- $M_t \geq 0$ \mathbb{P} -a.s.,
- ullet $\mathbb{E}^{\mathbb{P}}[M_t \mid \mathcal{F}_{t-1}] \leq M_{t-1}$, and
- $\mathbb{E}^{\mathbb{P}}[M_0] \leq 1$.

E-process for \mathcal{P} . A sequence of e-values $E = (E_t)_{t \geq 0}$ adapted to \mathcal{F} and either (equivalently):

- $\mathbb{E}^{\mathbb{P}}[E_{\tau}] \leq 1$ for every stopping time τ and $\mathbb{P} \in \mathcal{P}$; or
- \exists a test supermartingale family $(M^{\mathbb{P}})_{\mathbb{P}\in\mathcal{P}}$ with $E_t \leq M_t^{\mathbb{P}}$, \mathbb{P} -a.s. for every $t \geq 0$ and $\mathbb{P}\in\mathcal{P}$.

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Optional stopping. If M is a test supermartingale for \mathbb{P} , then for any stopping time τ and $\sigma \leq \tau$:

$$\mathbb{E}^{\mathbb{P}}[M_{ au} \mid \mathcal{F}_{\sigma}] \leq M_{\sigma} \implies \mathbb{E}^{\mathbb{P}}[M_{ au}] \leq \mathbb{E}^{\mathbb{P}}[M_{0}] \leq 1.$$

Optional stopping. If M is a test supermartingale for \mathbb{P} , then for any stopping time τ and $\sigma \leq \tau$:

$$\mathbb{E}^{\mathbb{P}}[M_{\tau} \mid \mathcal{F}_{\sigma}] \leq M_{\sigma} \implies \mathbb{E}^{\mathbb{P}}[M_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M_{0}] \leq 1.$$

Ville's inequality. If M is a non-negative supermartingale for \mathbb{P} , then for any x > 0,

$$\mathbb{P}(\exists t \in \mathbb{N} : M_t \geq x) \leq \frac{\mathbb{E}^{\mathbb{P}}[M_0]}{x}$$

Optional stopping. If M is a test supermartingale for \mathbb{P} , then for any stopping time τ and $\sigma \leq \tau$:

$$\mathbb{E}^{\mathbb{P}}[M_{\tau} \mid \mathcal{F}_{\sigma}] \leq M_{\sigma} \implies \mathbb{E}^{\mathbb{P}}[M_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M_{0}] \leq 1.$$

Ville's inequality. If M is an e-process for \mathcal{P} , then for any $\alpha \in (0,1]$,

$$\mathbb{P}\left(\exists t \in \mathbb{N} : M_t \ge \frac{1}{\alpha}\right) \le \alpha$$

Optional stopping. If M is a test supermartingale for \mathbb{P} , then for any stopping time τ and $\sigma \leq \tau$:

$$\mathbb{E}^{\mathbb{P}}[M_{\tau} \mid \mathcal{F}_{\sigma}] \leq M_{\sigma} \implies \mathbb{E}^{\mathbb{P}}[M_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M_{0}] \leq 1.$$

Ville's inequality. If M is an e-process for \mathcal{P} , then for any $\alpha \in (0,1]$,

$$\mathbb{P}\left(\exists t \in \mathbb{N} : M_t \ge \frac{1}{\alpha}\right) \le \alpha$$

Proposition

Every level- α sequential test for \mathcal{P} is a e-process for \mathcal{P} thresholded at $1/\alpha$.

Optional stopping. If M is a test supermartingale for \mathbb{P} , then for any stopping time τ and $\sigma \leq \tau$:

$$\mathbb{E}^{\mathbb{P}}[M_{\tau} \mid \mathcal{F}_{\sigma}] \leq M_{\sigma} \implies \mathbb{E}^{\mathbb{P}}[M_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M_{0}] \leq 1.$$

Ville's inequality. If M is an e-process for \mathcal{P} , then for any $\alpha \in (0,1]$,

$$\mathbb{P}\left(\exists t \in \mathbb{N} : M_t \ge \frac{1}{\alpha}\right) \le \alpha$$

Proposition

Every level- α sequential test for \mathcal{P} is a e-process for \mathcal{P} thresholded at $1/\alpha$.

Optional continuation. If M^A , M^B are e-processes for $\mathcal P$ and $M_t^B=1$ on $\{t\leq \tau\}$, then $M=(M_t)$ with $M_t:=M_{\tau\wedge t}^A\,M_t^B$ is an e-process for $\mathcal P$.

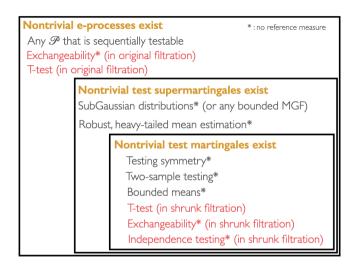


Figure: Hierarchy of tools for constructing sequential tests: nontrivial e-processes (outermost), test supermartingales (middle), and test martingales (innermost), with examples of what each can test.

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under 7
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Log-optimality (testing \mathbb{P} vs \mathbb{Q}) (recap)

The LR process M^* given by $M_0^*=1$ and $M_t^*=\frac{\mathrm{d}\mathbb{Q}|_{\mathcal{F}_t}}{\mathrm{d}\mathbb{P}|_{\mathcal{F}_t}}(X_1,\ldots,X_t)$ is a test martingale for \mathbb{P} .

Theorem (Log-optimality)

For any stopping time τ that is finite \mathbb{Q} -a.s. and any e-process M for \mathbb{P} :

$$\mathbb{E}^{\mathbb{Q}}[\log M_{\tau}^*] \geq \mathbb{E}^{\mathbb{Q}}[\log M_{\tau}].$$

⇒ LR processes are useful benchmark for testing against composite alternatives.

Asymptotic log-optimality (testing \mathbb{P} vs \mathcal{Q}) (recap)

Definition

An e-process M is asymptotically log-optimal for $\mathbb P$ against $\mathcal Q$ if for every $\mathbb Q\in\mathcal Q$,

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb{Q}}
ight)\geq 0\quad ext{in L^1-convergence under \mathbb{Q}}$$

where $M^{\mathbb{Q}}$ is the LR process of \mathbb{Q} to \mathbb{P} .

 \implies covers any e-process M that grows an $e^{o(t)}$ factor slower than $M^{\mathbb{Q}}$.

Asymptotic log-optimality (testing \mathbb{P} vs \mathcal{Q}) (recap)

Definition

An e-process M is asymptotically log-optimal for $\mathbb P$ against $\mathcal Q$ if for every $\mathbb Q\in\mathcal Q$,

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb{Q}}
ight)\geq 0$$
 in L^1 -convergence under \mathbb{Q}

where $M^{\mathbb{Q}}$ is the LR process of \mathbb{Q} to \mathbb{P} .

 \implies covers any e-process M that grows an $e^{o(t)}$ factor slower than $M^{\mathbb{Q}}$.

Testing \mathbb{P} against $\mathcal{Q} = {\mathbb{Q}_{\theta} : \theta \in \Theta_1}$ with iid data: $M_0 = 1$, and with predictable $\hat{\theta}_{i-1}$, use

- Plug-in LR: $M_t = \prod_{i=1}^t \frac{q_{\hat{\theta}_{i-1}}(X_i)}{p(X_i)}$, or
- Mixture LR: $M_t = \int_{\Theta_1} \prod_{i=1}^t \frac{q_{\theta}(X_i)}{p(X_i)} \nu(\mathrm{d}\theta), \quad \nu$ a prior on Θ_1 .

Plug-in is asymptotically log-optimal when $\theta_i \to \theta$ under \mathbb{Q}_{θ} in a suitable sense, given log-LR is concave, score function has bounded variance.

Example: Given iid data from $N(\theta^{\dagger},1)$, goal is to test $H_0:\theta^{\dagger}=0$ vs $H_1:\theta^{\dagger}>0$. For illustration, take $\theta^{\dagger}=0.3$.

Example: Given iid data from $N(\theta^{\dagger}, 1)$, goal is to test $H_0: \theta^{\dagger} = 0$ vs $H_1: \theta^{\dagger} > 0$. For illustration, take $\theta^{\dagger} = 0.3$.

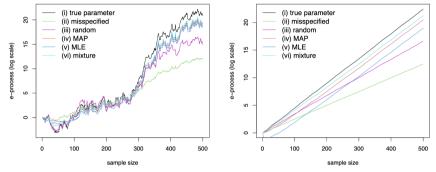


Figure: few ways of constructing e-values from LR processes. Left: one run. Right: average of 1000 runs.

- (i) true parameter: choose $\theta_i = \theta^{\dagger} = 0.3$
- (ii) misspecified: choose $heta_i = 0.1$
- (iii) random: take iid θ_i from U[0, 0.5]
- (iv) MAP: choose θ_i by the MAP estimator with prior $\theta \sim N(0.1, 0.2^2)$
- (v) MLE: choose θ_i with $\theta_1:=0.1$ and θ_i the MLE of θ based on X_1,\ldots,X_{i-1}
- (vi) mixture: compute a mixture of M each with a fixed $\theta_i \in [0, 0.6]$, uniformly weighted via a discrete grid

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{T}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{F}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Goal: build an e-variable (or an e-process) to test a composite null \mathcal{P} against composite alternative \mathcal{Q} under no regularity conditions.

Recipe: a reduction from hypothesis testing to MLE under \mathcal{P} .

Goal: build an e-variable (or an e-process) to test a composite null $\mathcal P$ against composite alternative Q under no regularity conditions.

Recipe: a reduction from hypothesis testing to MLE under \mathcal{P} .

Theorem (UI/Split LR e-variable)

Split data $X_{1:n}$ into $D_0 \perp D_1$, define

$$X_{1:n}$$
 into $D_0 \perp D_1$, define $E = \prod_{i \in D_0} rac{\hat{q}_1(X_i)}{\hat{p}_0(X_i)}, \qquad \hat{q}_1 \in \mathcal{Q} ext{ learned from } D_1, \;\; \hat{p}_0 \in \mathcal{P} ext{ is the MLE on } D_0,$

then E is an e-variable for \mathcal{P} .

Goal: build an e-variable (or an e-process) to test a composite null \mathcal{P} against composite alternative \mathcal{Q} under no regularity conditions.

Recipe: a reduction from hypothesis testing to MLE under \mathcal{P} .

Theorem (UI/Split LR e-variable)

Split data $X_{1:n}$ into $D_0 \perp D_1$, define

$$\mathcal{E} = \prod_{i \in D_0} rac{\hat{q}_1(X_i)}{\hat{p}_0(X_i)}, \qquad \hat{q}_1 \in \mathcal{Q} ext{ learned from } D_1, \;\; \hat{p}_0 \in \mathcal{P} ext{ is the MLE on } D_0,$$

then E is an e-variable for \mathcal{P} .

Proposition (UI e-process)

Define $E_0 = 1$ and

$$E_t = \prod_{i=1}^t rac{\hat{q}_{i-1}(X_i)}{\hat{p}_t(X_i)} ext{ for } t \geq 1, \quad \hat{q}_{i-1} \in \mathcal{Q} ext{ learned from } X_{1:i-1}, \quad \hat{p}_t \in \mathcal{P} ext{ is the MLE on } X_{1:t},$$

then $E = (E_t)$ is an e-process for \mathcal{P} .

Proposition (UI e-process)

Define $E_0 = 1$ and

$$E_t = \prod_{i=1}^t rac{\hat{q}_{i-1}(X_i)}{\hat{p}_t(X_i)} ext{ for } t \geq 1, \quad \hat{q}_{i-1} \in \mathcal{Q} ext{ learned from } X_{1:i-1}, \quad \hat{p}_t \in \mathcal{P} ext{ is the MLE on } X_{1:t},$$

then $E = (E_t)$ is an e-process for \mathcal{P} .

Proposition (UI e-process)

Define $E_0 = 1$ and

$$E_t = \prod_{i=1}^t rac{\hat{q}_{i-1}(X_i)}{\hat{p}_t(X_i)} ext{ for } t \geq 1, \quad \hat{q}_{i-1} \in \mathcal{Q} ext{ learned from } X_{1:i-1}, \quad \hat{p}_t \in \mathcal{P} ext{ is the MLE on } X_{1:t},$$

then $E = (E_t)$ is an e-process for \mathcal{P} .

Proof. For every $\mathbb{P} \in \mathcal{P}$, let $M_0^{\mathbb{P}} = E_0 = 1$, and

$$M_t^\mathbb{P}\coloneqq\prod_{i=1}^trac{\hat{q}_{i-1}(X_i)}{p(X_i)}\geq\prod_{i=1}^trac{\hat{q}_{i-1}(X_i)}{\hat{p}_t(X_i)}=E_t ext{ for } t\geq 1.$$

Then $M_t^{\mathbb{P}}$ is a test martingale for \mathbb{P} .

 $\Rightarrow \text{ optional stopping: } \mathbb{E}^{\mathbb{P}}[M^{\mathbb{P}}_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M^{\mathbb{P}}_{0}] = 1 \Rightarrow \mathbb{E}^{\mathbb{P}}[E_{\tau}] \leq \mathbb{E}^{\mathbb{P}}[M^{\mathbb{P}}_{\tau}] \leq 1 \text{ for every stopping time } \tau.$

Proposition (UI e-process)

Define $E_0 = 1$ and

$$E_t = \prod_{i=1}^t rac{\hat{q}_{i-1}(X_i)}{\hat{p}_t(X_i)} ext{ for } t \geq 1, \quad \hat{q}_{i-1} \in \mathcal{Q} ext{ learned from } X_{1:i-1}, \quad \hat{p}_t \in \mathcal{P} ext{ is the MLE on } X_{1:t},$$

then $E = (E_t)$ is an e-process for \mathcal{P} .

Remarks.

- Learn alternative out-of-sample; fit null in-sample.
- The derived sequential test $\mathbb{1}\{E_t \geq \frac{1}{\alpha}\}$ is computationally expensive: while numerator can be updated in an online fashion, all terms in denominator need to be recalculated after observing each new data point costing O(t) at step t.
- Can use mixture instead of plug-in: $E_t = \int_{\mathcal{Q}} \prod_{i=1}^t \frac{q(X_i)}{\hat{p}_t(X_i)} \nu(\mathrm{d}q)$ for any distribution ν over \mathcal{Q} .

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t {\color{red} E_s}(X_s).$

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t E_s(X_s)$.

Definition (Sequential e-variables)

The e-variables E_t with $t \geq 1$ for \mathcal{P} , adapted to the filtration \mathcal{F} , are sequential if

$$\mathbb{E}^{\mathbb{P}}[E_t \mid \underbrace{E_1, \dots, E_{t-1}}_{\mathcal{F}_{t-1}}] \leq 1, \quad \forall \, \mathbb{P} \in \mathcal{P}, \, \forall t \geq 1.$$

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot E_t(X_t) = \prod_{s=1}^t E_s(X_s)$.

Proposition

If $(E_t)_{t\geq 1}$ are sequential e-variables for \mathcal{P} ,

$$M_t = \prod_{s=1}^t E_s \quad \text{for } t \ge 1, \qquad M_0 = 1,$$

is a test supermartingale (hence e-process) for \mathcal{P} .

Proof.
$$\mathbb{E}^{\mathbb{P}}[M_t \mid \mathcal{F}_{t-1}] = M_{t-1} \mathbb{E}^{\mathbb{P}}[E_t \mid \mathcal{F}_{t-1}] \leq M_{t-1}$$
 for every $\mathbb{P} \in \mathcal{P}$.

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t {\color{red} E_s}(X_s).$

Question: What are the optimal bets?

Testing by betting

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t E_s(X_s)$.

Question: What are the optimal bets?

• For simple $\mathcal{P}=\{\mathbb{P}\}$ and $\mathcal{Q}=\{\mathbb{Q}\}$, $E_t(X_t)=rac{q(X_t|\mathcal{F}_{t-1})}{p(X_t|\mathcal{F}_{t-1})}$ ensures (M_t) is log-optimal.

Testing by betting

Initialize wealth $M_0 = 1$. For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t E_s(X_s)$.

Question: What are the optimal bets?

- For simple $\mathcal{P}=\{\mathbb{P}\}$ and $\mathcal{Q}=\{\mathbb{Q}\}$, $E_t(X_t)=rac{q(X_t|\mathcal{F}_{t-1})}{p(X_t|\mathcal{F}_{t-1})}$ ensures (M_t) is log-optimal.
- For composite \mathcal{P} ,
 - (i) No known analogue of the LR increments that makes (M_t) log-optimal;
 - (ii) While numeraires are log-optimal, they are designed for fixed sample size, $\Longrightarrow E_t = E^{(t)*}/E^{(t-1)*} \text{ need not satisfy } \mathbb{E}^{\mathbb{P}}[E_t \mid \mathcal{F}_{t-1}] \leq 1 \text{ and } (E^{(t)*})_{t \geq 1} \text{ is valid for the "least-favourable" } \mathbb{P}^* \in \mathcal{P}^{\circ\circ} \text{ via RIPr but not for all } \mathbb{P} \in \mathcal{P}.$

Testing by betting

Initialize wealth $M_0 = 1$. For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot {\color{red} E_t}(X_t) = \prod_{s=1}^t E_s(X_s)$.

Question: What are the optimal bets?

- For simple $\mathcal{P} = \{\mathbb{P}\}$ and $\mathcal{Q} = \{\mathbb{Q}\}$, $E_t(X_t) = \frac{q(X_t|\mathcal{F}_{t-1})}{p(X_t|\mathcal{F}_{t-1})}$ ensures (M_t) is log-optimal.
- For composite \mathcal{P} ,
 - (i) No known analogue of the LR increments that makes (M_t) log-optimal;
 - (ii) While numeraires are log-optimal, they are designed for fixed sample size, $\Longrightarrow E_t = E^{(t)*}/E^{(t-1)*} \text{ need not satisfy } \mathbb{E}^{\mathbb{P}}[E_t \mid \mathcal{F}_{t-1}] \leq 1 \text{ and } (E^{(t)*})_{t \geq 1} \text{ is valid for the "least-favourable" } \mathbb{P}^* \in \mathcal{P}^{\circ \circ} \text{ via RIPr but not for all } \mathbb{P} \in \mathcal{P}.$
 - (iii) Possible solution: Avoid all-in; pick $\lambda_t \in [0,1]$ to hedge misspecification.

Testing by betting (generalised)

Initialize wealth $M_0 = 1$. For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Choose stake $\lambda_t \in [0, 1]$.
- Observe data X_t .
- Update wealth: $M_t = \underbrace{(1 \lambda_t) M_{t-1} \cdot 1}_{\text{guaranteed wealth}} + \underbrace{\lambda_t M_{t-1} \cdot E_t}_{\text{risky payoff}} = \prod_{s=1}^t \left((1 \lambda_s) + \lambda_s E_s \right)$

Testing by betting (generalised)

Initialize wealth $M_0 = 1$. For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E}_t(X_t) \mid \mathcal{F}_{t-1}] < 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Choose stake $\lambda_t \in [0, 1]$.
- Observe data X_t .
- Update wealth: $M_t = \underbrace{(1 \lambda_t) M_{t-1} \cdot 1}_{\text{guaranteed wealth}} + \underbrace{\lambda_t M_{t-1} \cdot E_t}_{\text{risky payoff}} = \prod_{s=1}^t \left((1 \lambda_s) + \lambda_s E_s \right)$

Proposition

 $(M_t)_{t\geq 0}$ is a test supermartingale (hence e-process) for \mathcal{P} .

Proof. $\mathbb{E}^{\mathbb{P}}[(1-\lambda_t)+\lambda_t \mathcal{E}_t \mid \mathcal{F}_{t-1}] \leq (1-\lambda_t)+\lambda_t \cdot 1 = 1$ for every $\mathbb{P} \in \mathcal{P}$.

Testing by betting (generalised)

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Choose stake $\lambda_t \in [0, 1]$.
- Observe data X_t .
- Update wealth: $M_t = \underbrace{(1 \lambda_t) M_{t-1} \cdot 1}_{\text{guaranteed wealth}} + \underbrace{\lambda_t M_{t-1} \cdot E_t}_{\text{risky payoff}} = \prod_{s=1}^t \left((1 \lambda_s) + \lambda_s E_s \right)$

Proposition

 $(M_t)_{t\geq 0}$ is a test supermartingale (hence e-process) for \mathcal{P} .

Proof. $\mathbb{E}^{\mathbb{P}}[(1-\lambda_t)+\lambda_t \mathcal{E}_t \mid \mathcal{F}_{t-1}] \leq (1-\lambda_t)+\lambda_t \cdot 1 = 1$ for every $\mathbb{P} \in \mathcal{P}$.

Definition

 $(M_t)_{t\geq 0}$ is called an e-process built on $(E_t)_{t\geq 1}$.

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda \mathcal{E}_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} \big[\log \big((1-\lambda) + \lambda E_t \big) \mid \mathcal{F}_{t-1} \big].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda E_s ig), \quad \lambda_1 = 0.$$

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda E_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

Remarks:

• Choose λ_t to maximise the (empirical) e-power of $(1 - \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda E_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

- Choose λ_t to maximise the (empirical) e-power of $(1 \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .
 - If $\mathcal{P} = \{\mathbb{P}\}$, $\mathcal{Q} = \{\mathbb{Q}\}$ and $\mathcal{E}_t = \text{conditional LR}$, then $\lambda_t = 1$.

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda E_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

- Choose λ_t to maximise the (empirical) e-power of $(1 \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .
 - If $\mathcal{P} = \{\mathbb{P}\}$, $\mathcal{Q} = \{\mathbb{Q}\}$ and $E_t = \text{conditional LR}$, then $\lambda_t = 1$.
 - Theorem 3.14: for $E \geq 0$, $\mathbb{E}^{\mathbb{Q}}[E] > 1 \Leftrightarrow \exists \lambda \in [0,1] \text{ s.t. } \mathbb{E}^{\mathbb{Q}}[\log ((1-\lambda) + \lambda E)] > 0$ \Longrightarrow If (empirical) mean of E_1, \ldots, E_{t-1} is ≤ 1 , choose $\lambda_t = 0$.

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda \mathcal{E}_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

- Choose λ_t to maximise the (empirical) e-power of $(1 \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .
 - If $\mathcal{P} = \{\mathbb{P}\}$, $\mathcal{Q} = \{\mathbb{Q}\}$ and $E_t = \text{conditional LR}$, then $\lambda_t = 1$.
 - Theorem 3.14: for $E \ge 0$, $\mathbb{E}^{\mathbb{Q}}[E] > 1 \Leftrightarrow \exists \lambda \in [0,1] \text{ s.t. } \mathbb{E}^{\mathbb{Q}}[\log((1-\lambda)+\lambda E)] > 0$ \Longrightarrow If (empirical) mean of E_1,\ldots,E_{t-1} is ≤ 1 , choose $\lambda_t = 0$.
- (M_t) generated from method (i) is log-optimal among e-processes built on (E_t)

Definitions

(i) For an alternative measure \mathbb{Q} , the \mathbb{Q} -log-optimal e-process built on (E_t) is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda \mathcal{E}_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is (M_t) with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

- Choose λ_t to maximise the (empirical) e-power of $(1 \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .
 - If $\mathcal{P} = \{\mathbb{P}\}$, $\mathcal{Q} = \{\mathbb{Q}\}$ and $E_t = \text{conditional LR}$, then $\lambda_t = 1$.
 - Theorem 3.14: for $E \ge 0$, $\mathbb{E}^{\mathbb{Q}}[E] > 1 \Leftrightarrow \exists \lambda \in [0,1] \text{ s.t. } \mathbb{E}^{\mathbb{Q}}[\log ((1-\lambda) + \lambda E)] > 0$ \Longrightarrow If (empirical) mean of E_1, \ldots, E_{t-1} is ≤ 1 , choose $\lambda_t = 0$.
- (M_t) generated from method (i) is log-optimal among e-processes built on (E_t)
- (M_t) generated from method (ii), GRAPA, has good e-power if (E_t) are roughly iid under \mathbb{Q} .

Empirically adaptive e-processes

Theorem

Let $(E_t)_{t\geq 1}$ be iid under the alternative distribution \mathbb{Q} such that $\mathbb{E}^{\mathbb{Q}}[\log E_1]$ is finite. The empirically adaptive e-process $(M_t)_{t\geq 0}$ with $\gamma=1$ satisfies the following:

(i) Asymptotic log-optimality in the sense that

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb Q}
ight)\geq 0\quad ext{in L^1-convergence under $\mathbb Q$}$$

for the \mathbb{Q} -log-optimal e-process $(M_t^{\mathbb{Q}})_{t\geq 0}$ built on $(E_t)_{t\geq 1}$.

(ii) Consistency, i.e., if $\mathbb{E}^{\mathbb{Q}}[E_1] > 1$, then $M_t \to \infty$ \mathbb{Q} -a.s. as $t \to \infty$.

Empirically adaptive e-processes

Theorem

Let $(E_t)_{t\geq 1}$ be iid under the alternative distribution \mathbb{Q} such that $\mathbb{E}^{\mathbb{Q}}[\log E_1]$ is finite. The empirically adaptive e-process $(M_t)_{t\geq 0}$ with $\gamma=1$ satisfies the following:

(i) Asymptotic log-optimality in the sense that

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb Q}
ight)\geq 0$$
 in L^1 -convergence under ${\mathbb Q}$

for the \mathbb{Q} -log-optimal e-process $(M_t^{\mathbb{Q}})_{t\geq 0}$ built on $(E_t)_{t\geq 1}$.

(ii) Consistency, i.e., if $\mathbb{E}^{\mathbb{Q}}[E_1] > 1$, then $M_t \to \infty$ \mathbb{Q} -a.s. as $t \to \infty$.

Proof.

- (i) follows from LLN.
- (ii) applies Theorem 3.14: for $E \ge 0$, $\mathbb{E}^{\mathbb{Q}}[E] > 1 \Leftrightarrow \exists \lambda \in [0,1] \text{ s.t. } \mathbb{E}^{\mathbb{Q}}[\log ((1-\lambda) + \lambda E)] > 0$.

Empirically adaptive e-processes

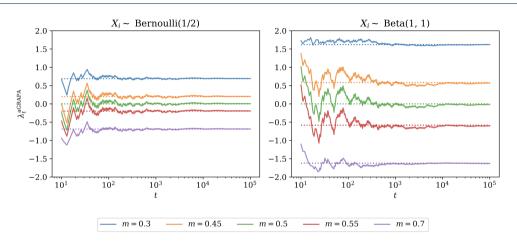


Figure: λ_t chosen using approximated GRAPA under 2 data distributions; dotted lines show oracle stakes.

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{T}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

4. Summary

Mixing fixed-sample-size e-variables into e-process

For all $t \geq 1$, let $E^{(t)}$ be e-variable for \mathcal{P} based on $X_{1:t}$. With any pmf w on \mathbb{N} , define

$$M_t = \sum_{j=1}^t w(j) \, {\it E}^{(j)}, \quad M_0 = 1.$$

Proposition

 $(M_t)_{t\geq 1}$ is an e-process for \mathcal{P} .

Mixing fixed-sample-size e-variables into e-process

For all $t \geq 1$, let $E^{(t)}$ be e-variable for \mathcal{P} based on $X_{1:t}$. With any pmf w on \mathbb{N} , define

$$M_t = \sum_{j=1}^t w(j) \, \boldsymbol{\mathcal{E}}^{(j)}, \quad M_0 = 1.$$

Proposition

 $(M_t)_{t\geq 1}$ is an e-process for \mathcal{P} .

Proof. For any $\mathbb{P} \in \mathcal{P}$ and any random time τ ,

$$\mathbb{E}^{\mathbb{P}}[M_{\tau}] = \sum_{j \geq 1} w(j) \, \mathbb{E}^{\mathbb{P}}\big[\boldsymbol{\mathcal{E}^{(j)}} \cdot \mathbb{1}\{\tau \geq j\} \big] \leq \sum_{j \geq 1} w(j) = 1.$$

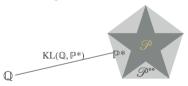
Remark. $(M_t)_{t>1}$ is an increasing process, which is unusual for e-processes.

Mixing fixed-sample-size numeraires into e-process

Mixing fixed-sample-size numeraires into e-process

Recall:

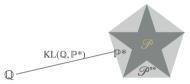
- A numeraire is a \mathbb{Q} -a.s. strictly positive e-variable E^* s.t. $\mathbb{E}^{\mathbb{Q}}[E/E^*] \leq 1$ for every e-variable E. $\Longrightarrow \mathbb{E}^{\mathbb{Q}}[\log(E/E^*)] \leq 0$.
- "Composite LR": E^* is LR between $\mathbb Q$ and some element $\mathbb P^* \in \mathcal P^{\circ\circ}$ (i.e., RIPr of $\mathbb Q$ onto $\mathcal P$).



Mixing fixed-sample-size numeraires into e-process

Recall:

- A numeraire is a \mathbb{Q} -a.s. strictly positive e-variable E^* s.t. $\mathbb{E}^{\mathbb{Q}}[E/E^*] \leq 1$ for every e-variable $E. \implies \mathbb{E}^{\mathbb{Q}}[\log(E/E^*)] \leq 0$.
- "Composite LR": E^* is LR between $\mathbb Q$ and some element $\mathbb P^* \in \mathcal P^{\circ\circ}$ (i.e., RIPr of $\mathbb Q$ onto $\mathcal P$).



Can mix fixed-sample-size numeraires to obtain an e-process:

Popular choice of mixing pmf: $w(t) = \frac{c}{t(\log t)^2}$ with $\sum_{t \in \mathbb{N}} w(t) = 1$ and constant c > 0.

$$\implies \log M_t \ge \log (w(t)E^{(t)*}) = \log E^{(t)*} - \log t - 2\log \log t + \log c$$

$$\implies \lim_{t\to\infty} \frac{1}{t} \left(\log M_t - \log E^{(t)*} \right) = 0.$$

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

4. Summary

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

4. Summary

Caveat: pathologies of e-power

Caveat: pathologies of e-power

Heavy tailed $\mathbb Q$ can make finite-sample e-power misleading:

Example: let $Y_1, Y_2, ...$ be iid Pareto(1) under \mathbb{Q} (i.e., $\mathbb{Q}(Y > x) = 1/x$ for $x \ge 1$), define $E_t = \exp(t^2 - Y_t)$ and set $M_t = \prod_{s=1}^t E_s$ for $t \in \mathbb{N}$. Then $\Longrightarrow \mathbb{E}^{\mathbb{Q}}[\log E_t] = -\infty$, but $\log E_t$ is \mathbb{Q} -a.s. finite $\Longrightarrow \mathbb{E}^{\mathbb{Q}}[\log M_t] = -\infty$ for every t, while $M_t \to \infty$ in probability under \mathbb{Q} (so $\mathbb{Q}(M_t \ge 1/\alpha) \to 1$)

Takeaway: Extra caution needed when infinity is involved in the calculation of e-power. Use consistency diagnostics alongside e-power.

Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{T}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

4. Summary

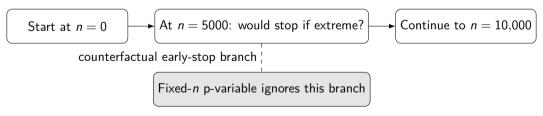
E-processes avoid reasoning about hypothetical worlds

E-processes avoid reasoning about hypothetical worlds

Even if an analyst actually stops at n = 10,000, the mere willingness to stop earlier if results had been extreme makes the stopping time data-dependent.

Consequence. Reasoning about the validity of p-variables requires reasoning about all possible "hypothetical worlds".

E-process fix. Report E_{τ} (or threshold at $1/\alpha$); valid for any stopping time τ , including adaptive or hypothetical ones.



Outline

1. Recap of part I

- 1.1 Motivation, setup, definitions
- 1.2 Validity: e-processes under \mathcal{P}
- 1.3 Efficiency: e-processes under Q

2. Constructing e-processes (valid for composite \mathcal{P})

- 2.1 Universal inference (UI)
- 2.2 Betting via sequential e-variables
- 2.3 Mixing fixed-sample-size e-variables

3. Further discussions

- 3.1 Caveat: pathologies of e-power
- 3.2 E-processes avoid reasoning about hypothetical worlds

4. Summary

Summary: SAVI with e-processes

Anytime validity: E-process controls type-I error at all stopping times; threshold at $1/\alpha$ via Ville.

Summary: SAVI with e-processes

Anytime validity: E-process controls type-I error at all stopping times; threshold at $1/\alpha$ via Ville. Simple null:

- LR process is log-optimal
- plug-in or mixture LR for composite alternative can be asymptotically log-optimal.

Summary: SAVI with e-processes

Anytime validity: E-process controls type-I error at all stopping times; threshold at $1/\alpha$ via Ville. Simple null:

- LR process is log-optimal
- plug-in or mixture LR for composite alternative can be asymptotically log-optimal.

Composite null:

- **UI e-process**: learn alt out-of-sample, fit null in-sample; applicable to irregular problems.
- Betting via sequential e-variables (E_t) : Tune stakes $\lambda_t \in [0,1]$ to form empirically adaptive e-process, matching asymptotic growth rate of its oracle counterpart if (E_t) are iid.
- Mixing fixed-sample-size numeraires: resulting e-process matches the numeraires' asymptotic growth rate.