1. Motivation for SAVI

- 1.1 Problem with peeking at p-values
- 1.2 Wald's Sequential Probability Ratio Test

2. Validity: e-processes under \mathcal{P}

- 2.1 Setup & definitions
- 2.2 Martingales, test (super)martingales & e-processes
- 2.3 Optional stopping & Ville's inequality

3. Efficiency: e-processes under Q

- 3.1 Simple \mathbb{P} vs. simple \mathbb{Q}
- 3.2 Simple \mathbb{P} vs. composite \mathcal{Q}
- 3.3 Composite P vs. composite Q: Testing by betting

4. Further discussions

5. Summary

From validity to efficiency

Consider an e-process $M = (M_t)_{t \ge 1}$.

Validity: $\mathbb{E}^{\mathbb{P}}[M_t] \leq 1 \ \forall t \geq 1$

Efficiency: maximise $\mathbb{E}^{\mathbb{Q}}[M_t]$ $\mathbb{E}^{\mathbb{Q}}[\log M_t]$

Example:

- $(X_t)_{t\geq 1}$ iid with $\mathbb{P}=\mathsf{Bern}(0.5)$ vs. $\mathbb{Q}=\mathsf{Bern}(0.6)$
- For a parameter $\kappa \in [0,1]$, let

$$E_t = egin{cases} 1+\kappa, & ext{if } X_t = 1 \ 1-\kappa, & ext{if } X_t = 0 \end{cases}$$
 for $t \geq 1$

$$\Longrightarrow \mathbb{E}^{\mathbb{P}}[E_t] = 0.5(1+\kappa) + 0.5(1-\kappa) = 1$$
, so E_t is an e-variable for \mathbb{P} $\Longrightarrow M_t = \prod_{i=1}^t E_i$ for $t \ge 1$ is an e-process for \mathbb{P}

• $\mathbb{E}^{\mathbb{Q}}[M_t] = t\mathbb{E}^{\mathbb{Q}}[E_1] = t(1+0.2\kappa)$ is maximised at $\kappa=1$

Maximise $\mathbb{E}^{\mathbb{Q}}[M_t]$ for efficiency?

Example:
$$(X_t)_{t\geq 1}$$
 iid with $\mathbb{P}=\mathsf{Bern}(0.5)$ vs. $\mathbb{Q}=\mathsf{Bern}(0.6)$. $M_t=\prod_{i=1}^t E_i$ with $E_t=\begin{cases} 1+\kappa & X_t=1\\ 1-\kappa & X_t=0 \end{cases}$

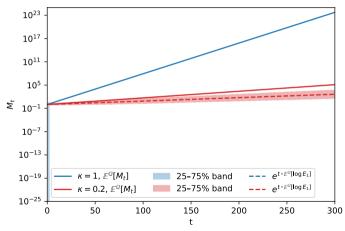


Figure: $M_t = \prod_{i=1}^t E_i$ under \mathbb{Q} , with 6000 runs.

Mean path: In $\kappa=1$ case, only the all-ones path $X_1,\ldots,X_t=1$ contributes to $\mathbb{E}^{\mathbb{Q}}[M_t]$ with tiny probability 0.6^t

Typical path?

$$\frac{1}{t} \log M_t \xrightarrow[t \to \infty]{\mathbb{Q}\text{-a.s.}} \mathbb{E}^{\mathbb{Q}} [\log E_1]$$

$$\Rightarrow \operatorname{median}(M_t) \sim e^{t\mathbb{E}^{\mathbb{Q}} [\log E_1]}$$

Maximise $\mathbb{E}^{\mathbb{Q}}[\log M_t]$ for efficiency

- Evidence multiplies (sums)
 ⇒ Typical path governed by geometric (arithmetic) mean
 ⇒ Look at logs
- $\mathbb{E}^{\mathbb{Q}}[\log M_t]$: e-power/expected log-growth

1. Motivation for SAVI

- 1.1 Problem with peeking at p-values
- 1.2 Wald's Sequential Probability Ratio Test

2. Validity: e-processes under \mathcal{P}

- 2.1 Setup & definitions
- 2.2 Martingales, test (super)martingales & e-processes
- 2.3 Optional stopping & Ville's inequality

3. Efficiency: e-processes under Q

- 3.1 Simple $\mathbb P$ vs. simple $\mathbb Q$
- 3.2 Simple \mathbb{P} vs. composite \mathcal{Q}
- 3.3 Composite P vs. composite Q: Testing by betting

4. Further discussions

5. Summary

Simple $\mathbb P$ vs. simple $\mathbb Q$

The Likelihood Ratio (LR) process M^* given by $M_0^*=1$ and $M_t^*=\frac{\mathrm{d}\mathbb{Q}|_{\mathcal{F}_t}}{\mathrm{d}\mathbb{P}|_{\mathcal{F}_t}}(X_1,\ldots,X_t)$ for $t\geq 1$ is a test martingale for \mathbb{P} .

Theorem (Log-optimality)

For any stopping time τ that is **finite** \mathbb{Q} -a.s. and any e-process M for \mathbb{P} :

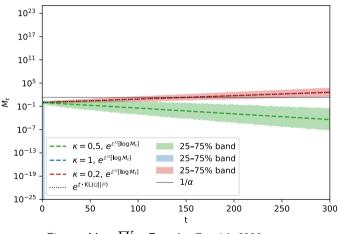
$$\mathbb{E}^{\mathbb{Q}}[\log M_{\tau}^*] \geq \mathbb{E}^{\mathbb{Q}}[\log M_{\tau}].$$

Proof. For fixed t, setting $M_t = M_t^*$ maximises $\mathbb{E}^{\mathbb{Q}}[\log M_t]$ (presented by François) + Reduction

Next: Going back to our Bernoulli example...

Simple \mathbb{P} vs. simple \mathbb{Q} : log-optimality of LR process

Example: $(X_t)_{t\geq 1}$ iid with $\mathbb{P} = \text{Bern}(0.5)$ vs. $\mathbb{Q} = \text{Bern}(0.6)$. $M_t = \prod_{i=1}^t E_i$ with E_t as a function of $\kappa \in [0,1]$.



LR process: $M_t^* = \prod_{i=1}^t \frac{d\mathbb{Q}}{d\mathbb{P}}(X_i)$

Remarks:

For every fixed t,

$$\begin{split} \mathbb{E}^{\mathbb{Q}}[\log M_t^*] &\geq \mathbb{E}^{\mathbb{Q}}[\log M_t] \\ &= \sum_{i=1}^t \mathbb{E}^{\mathbb{Q}}[\log \frac{d\mathbb{Q}}{d\mathbb{P}}(X_i)] = t \cdot \mathrm{KL}(\mathbb{Q}||\mathbb{P}) \end{split}$$

Asymptotically,

Power
$$\mathbb{Q}(M_t \geq \frac{1}{\alpha}) \xrightarrow[t \to \infty]{} 1$$

Figure: $M_t = \prod_{i=1}^t E_i$ under \mathbb{Q} , with 6000 runs.

1. Motivation for SAVI

- 1.1 Problem with peeking at p-values
- 1.2 Wald's Sequential Probability Ratio Test

2. Validity: e-processes under \mathcal{P}

- 2.1 Setup & definitions
- 2.2 Martingales, test (super)martingales & e-processes
- 2.3 Optional stopping & Ville's inequality

3. Efficiency: e-processes under Q

- 3.1 Simple \mathbb{P} vs. simple \mathbb{Q}
- 3.2 Simple \mathbb{P} vs. composite \mathcal{Q}
- 3.3 Composite \mathcal{P} vs. composite \mathcal{Q} : Testing by betting
- 4. Further discussions
- 5. Summary

Simple $\mathbb P$ vs. composite $\mathcal Q$

Definition (Asymptotic log-optimality)

An e-process M is asymptotically log-optimal for $\mathbb P$ against $\mathcal Q$ if for every $\mathbb Q\in\mathcal Q$,

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb Q}
ight)\geq 0\quad ext{in } L^1 ext{-convergence under }{\mathbb Q}$$

where $M^{\mathbb{Q}}$ is the oracle LR process of \mathbb{Q} to \mathbb{P} .

- Requires at least the same long-run log-growth rate as $M^{\mathbb{Q}}$
- Covers any e-process M that grows an $e^{o(t)}$ factor slower than $M^{\mathbb{Q}}$

Definition (Consistency)

An e-process M is said to be consistent against \mathbb{Q} if $M_t \to \infty$, \mathbb{Q} -a.s. as $t \to \infty$.

Simple $\mathbb P$ vs. composite $\mathcal Q$

Example: Testing \mathbb{P} against $\mathcal{Q} = {\mathbb{Q}_{\theta} : \theta \in \Theta_1}$ with iid data.

Plug-in LR: Set $M_0=1$, and for $t\geq 1$ use $M_t=\prod_{i=1}^t \frac{q_{\hat{\theta}_{i-1}}(X_i)}{\rho(X_i)}$ with predictable $\hat{\theta}_{i-1}\in\Theta_1$

Proposition (informal)

Plug-in is asymptotically log-optimal when $\theta_i \to \theta$ under \mathbb{Q}_{θ} in a suitable sense, given log-LR is concave, score function has bounded variance.

Example: Given iid data from $N(\theta^{\dagger},1)$, goal is to test $\mathcal{H}_0:\theta^{\dagger}=0$ vs $\mathcal{H}_1:\theta^{\dagger}>0$. For illustration, take $\theta^{\dagger}=0.3$.

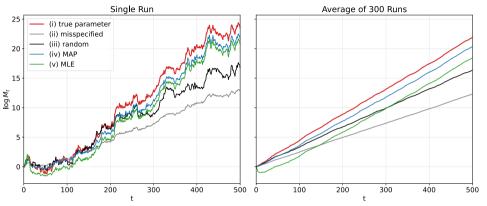


Figure: Few ways of constructing e-processes from LR processes.

- (i) true parameter: choose $\theta_i = \theta^{\dagger} = 0.3$
- (ii) misspecified: choose $\theta_i=0.1$
- (iii) random: take iid θ_i from U[0, 0.5]
- (iv) MAP: choose θ_i by the MAP estimator with prior $\theta \sim N(0.1, 0.2^2)$
- (v) MLE: choose θ_i with $\theta_1 := 0.1$ and θ_i the MLE of θ based on X_1, \dots, X_{i-1}

1. Motivation for SAVI

- 1.1 Problem with peeking at p-values
- 1.2 Wald's Sequential Probability Ratio Test

2. Validity: e-processes under \mathcal{P}

- 2.1 Setup & definitions
- 2.2 Martingales, test (super)martingales & e-processes
- 2.3 Optional stopping & Ville's inequality

3. Efficiency: e-processes under Q

- 3.1 Simple $\mathbb P$ vs. simple $\mathbb Q$
- 3.2 Simple \mathbb{P} vs. composite \mathcal{Q}
- 3.3 Composite P vs. composite Q: Testing by betting
- 4. Further discussions
- 5. Summary

Testing by betting

Key idea: e-process for $\mathcal{P}=$ wealth of a bettor wagering against \mathcal{P}

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot E_t(X_t) = \prod_{s=1}^t E_s(X_s)$.

Proposition

If $\mathbb{E}^{\mathbb{P}}[E_t \mid \mathcal{F}_{t-1}] \leq 1$ for all $\mathbb{P} \in \mathcal{P}$ and $t \geq 1$, then $M_t = \prod_{s=1}^t E_s$ for $t \geq 1$ with $M_0 = 1$ is a test supermartingale (hence e-process) for \mathcal{P} .

Proof. $\mathbb{E}^{\mathbb{P}}[M_t \mid \mathcal{F}_{t-1}] = M_{t-1} \mathbb{E}^{\mathbb{P}}[E_t \mid \mathcal{F}_{t-1}] \leq M_{t-1}$ for every $\mathbb{P} \in \mathcal{P}$.

Testing by betting

Key idea: e-process for $\mathcal{P}=$ wealth of a bettor wagering against \mathcal{P}

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[\underline{E_t}(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Observe data X_t .
- Update wealth: $M_t = M_{t-1} \cdot E_t(X_t) = \prod_{s=1}^t E_s(X_s)$.

Question: What are the optimal bets?

- For simple $\mathcal{P} = \{\mathbb{P}\}$ and $\mathcal{Q} = \{\mathbb{Q}\}$, $E_t(X_t) = \frac{q(X_t | \mathcal{F}_{t-1})}{p(X_t | \mathcal{F}_{t-1})}$ ensures $(M_t)_{t \geq 0}$ is log-optimal.
- For composite \mathcal{P} and \mathcal{Q} ,
 - (i) No known analogue of the LR increments that makes $(M_t)_{t\geq 0}$ log-optimal;
 - (ii) Compromise: Avoid all-in; pick stake $\lambda_t \in [0,1]$ to hedge misspecification.

Testing by betting (composite P vs. Q)

Initialize wealth $M_0 = 1$.

For t = 1, 2, ...:

- Declare a bet $E_t: \mathcal{X} \to [0, \infty)$ with $\mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 1 \ \forall \mathbb{P} \in \mathcal{P}$.
- Choose stake $\lambda_t \in [0, 1]$.
- Observe data X_t .
- Update wealth: $M_t = \underbrace{(1 \lambda_t) M_{t-1} \cdot 1}_{\text{guaranteed wealth}} + \underbrace{\lambda_t M_{t-1} \cdot E_t}_{\text{risky payoff}} = \prod_{s=1}^t \left((1 \lambda_s) + \lambda_s \, E_s \right)$

Proposition

 $(M_t)_{t\geq 0}$ is a test supermartingale (hence e-process) for \mathcal{P} .

Proof. $\mathbb{E}^{\mathbb{P}}[(1-\lambda_t)+\lambda_t \mathcal{E}_t \mid \mathcal{F}_{t-1}] \leq (1-\lambda_t)+\lambda_t \cdot 1 = 1$ for every $\mathbb{P} \in \mathcal{P}$.

Next: How to optimise the stakes $(\lambda_t)_{t\geq 1}$?

Optimising predictable stakes $(\lambda_t)_{t\geq 1}$

Definitions

(i) For an alternative measure \mathbb{Q} , the oracle e-process built on $(E_t)_{t\geq 1}$ is $(M_t)_{t\geq 0}$ with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda \mathcal{E}_t ig) \mid \mathcal{F}_{t-1} ig].$$

(ii) For $\gamma \in (0,1]$, the empirically adaptive e-process is $(M_t)_{t\geq 0}$ with

$$\lambda_t \in rg \max_{\lambda \in [0,\gamma]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$

Remarks:

- Choose λ_t to maximise the (empirical) e-power of $(1 \lambda_t) + \lambda_t E_t$ given \mathcal{F}_{t-1} .
- $(M_t)_{t\geq 0}$ from (i) is log-optimal among e-processes built on $(E_t)_{t\geq 1}$
- $(M_t)_{t\geq 0}$ from (ii) has good e-power & power if $(E_t)_{t\geq 1}$ are roughly iid under \mathbb{Q} .

Next: Going back to our iid Bernoulli example...

Example:

- $(X_t)_{t>1}$ iid from Bern(p), with $\mathcal{H}_0: p \leq 0.5$ vs. $\mathcal{H}_1: p \geq 0.55$.
- For $t \geq 1$, let

$$E_t = \begin{cases} 2, & \text{if } X_t = 1 \\ 0, & \text{if } X_t = 0 \end{cases}$$

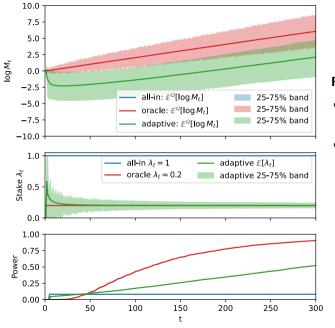
$$\implies \mathbb{E}^{\mathbb{P}}[E_t(X_t) \mid \mathcal{F}_{t-1}] \leq 0.5 \cdot 2 + 0.5 \cdot 0 = 1 \text{ for } p \leq 0.5.$$

- Nature picks $\mathbb{Q} = \mathsf{Bern}(0.6)$.
- Oracle e-process built on $(E_t)_{t\geq 1}$ bets with

$$\lambda_t = 0.2 \in rg \max_{\lambda \in [0,1]} \mathbb{E}^{\mathbb{Q}} ig[\log ig((1-\lambda) + \lambda E_t ig) ig].$$

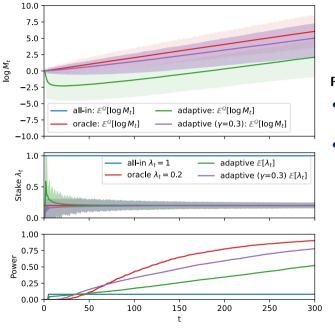
Empirically adaptive e-process bets with

$$\lambda_t \in rg \max_{\lambda \in [0,1]} rac{1}{t-1} \sum_{s=1}^{t-1} \log ig((1-\lambda) + \lambda \mathcal{E}_s ig), \quad \lambda_1 = 0.$$



Remarks:

- oracle e-process is log-optimal among e-processes built on (E_t)_{t>1}
- empirically-adaptive e-process
 - lies between oracle and all-in
 - ullet stakes concentrate as $t o \infty$
 - more aggressive at the start
 - has good e-power & power when $(E_t)_{t>1}$ iid under $\mathbb Q$



Remarks:

- oracle e-process is log-optimal among e-processes built on $(E_t)_{t\geq 1}$
- empirically-adaptive e-process
 - lies between oracle and all-in
 - ullet stakes concentrate as $t o \infty$
 - more aggressive at the start
 - has good e-power & power when $(E_t)_{t>1}$ iid under \mathbb{Q}

Empirically adaptive e-processes

Theorem

Let $(E_t)_{t\geq 1}$ be iid under the alternative distribution \mathbb{Q} such that $\mathbb{E}^{\mathbb{Q}}[\log E_1]$ is finite. The empirically adaptive e-process $(M_t)_{t\geq 0}$ with $\gamma=1$ satisfies the following:

(i) Asymptotic log-optimality in the sense that

$$\lim_{t o\infty}rac{1}{t}\left(\log M_t-\log M_t^{\mathbb Q}
ight)\geq 0$$
 in L^1 -convergence under ${\mathbb Q}$

with the oracle e-process $(M_t^{\mathbb{Q}})_{t\geq 0}$ built on $(E_t)_{t\geq 1}$.

(ii) Consistency, i.e., if $\mathbb{E}^{\mathbb{Q}}[E_1] > 1$, then $M_t \to \infty$ \mathbb{Q} -a.s. as $t \to \infty$.

Proof.

- (i) follows from LLN.
- (ii) due to for $E \geq 0$, $\mathbb{E}^{\mathbb{Q}}[E] > 1 \Longleftrightarrow \exists \lambda \in [0,1] \text{ s.t. } \mathbb{E}^{\mathbb{Q}}[\log ((1-\lambda) + \lambda E)] > 0$.